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A FODIFIED DYNAMIC PROGRAMMING METHOD FOR MARKOVIAN DECISION PROBLEMSl

J. MacQueen
University of California, Los Angeles
1. Introduction. Iet Xl, Xé,...be a sequence of random variables taking

values in a finite set S, and controlled by a decision meker who at each

tire t =1, 2,..., Observes Xt and then picks an action & bslonging to a

finite set A; then if Xt = x, the vrobability that xt+1 = y beccme:s

p(y; X, a), where p is a xnocwn function. Also, choice of action a when

Kf = x earns a2 known aincunt g(x, 2) imrediately. Future income is dis-

counted by a constant factor o < 1. Thus, if ay is the action chosen

efter observing Xt’ t =121, 2,..., the disccunted return is defined to be
- - ,2 - 3 3 -
g(xi, al) +-ag(Xé, 02) + cg(x3, a3) + ...o A pOlicy r is a rule for

determining each of thz actions a, 2s a function of X, and (possibly)

t t

the sequences Xi, Xé""xt-l &nd 835 850008y 4. If the policy r is
used and X; =X, the expected discounted return is given by gr(x),

say, and we are interested in meximizing ur(x) by an appropriate choice
of r. Iet u*¥(x) = suprur(x).

This paper descrilbes a simple algorithm for this problem that is
basically an improved version of the standard dynamic programming iterative
schere (see belcw). Upper and lower tounds on the optimal return are
produced by the algorithm at each iteration. These both converge monoc-
tonely to the optimal return. Also, the policy determined at each stage
achieves a return at least as gocd as the corresponding lower bound. The
sequence of policies prcduced is actually the same sequence produced by

the dynamic programming methed; the improvement consists of both better

lThis research was supported in part by a grant from the Ford ?ounda—
tion, and in part by the G:iiise cf Naval Research (Contract 233(75)).




inforrmation about convergence of the sequence of policies, and the fact
that as regards ccmputing u*, the algorithn is apperently much faster.
Thus, when the algorithm was applied to the autcmobile replacement
Droblem described by Howard [5, p. 89], the upper and lower bounds were
within 1.3% of u* after 25 iterations, at vhich time the optimal policy
was reached. The mean of the upper and lower bounds was within .08% of
u¥ at this point. After 50 iterations the upper and Jowsr bounds were
within .05% of u¥* and their mean was within .0005% of u#*. The estimate
of u* produced by the standard dynamic programming method was 40.5%
below u¥ after 25 iterations; in fact, 2fter 160 iterations, this estimzte
vas still below u¥* by 1.)1%. Both ncthods require essentially the sare
csmputaticns.2

The methed of volicy iteration required only 9 itcrations for the
automobile replacement problem. However, while otherwise comparable, each
iteration using this method involves the "value determination” operatiocn,
vhich amounts to solving N equations in I unknowns, N being the number of
states. Because of this, it is not clear which methed is superior frox a
computational point of view. The proposed method may have an important
relative advantage in problems with a large number of states, where the
value determination operation presents computational difficulties.

The main properties of the algorithm are described in Theorem 2 of
Section 3. A key part of this theorem is based on the very simple but
useful relationship contained in Theorem 1 of Section 2. Theorem 1 may be

3

of independent interest.” The error bounds provided by parts (i) and (iv)

2In this ccmparison, the initial function used by both methods was set
at zero, and the percentage errors given are based on the statec where this
error vas maximal using the provosed method.

3heorem 1 derives from some joint vork [6] of R. M. Redheffer and
the author.




3
of Theorem 2 can be applied to the volicies and estimates of the optimal
return preduced by other methods.

For further relevent discussion of Markovian decision problems, the
reader is referred to papers by d'Epenoux [3], Mann (7], Scerf [8] , and
Vagrer [9].

2. Notation and preliminaries. For dealing with a sequence of real-

vaiued functions on S, Vis Vpseee, it is convenient to associate vith

each v_ another function r  on S into 4, such that

glx,r(x)) + o I v (¥)2(y;sx,r (x)) = max lg(x,2) + e Zv (v)o(ysx,2)],

and then define the function g by gn(x) = g(x, r (x)) and the trznsfor-
mation P by (Pnf)(x) = Eyf(y)p(y; %, rn(x)). In these terms the
dynamic programming algorithm is defined by an initial function vy

and the rule Ve = 8y + o P,_vn, n=1,2,.... A functionr on S

+1
into A is termed a statiomary policy. For such a function, define
the transformation Tr by

(T 2)(£) = £(x) - &lx, r(x)) - o= £(y)o(y; %, r(x)).
The expected return u for a stationary pelicy satisfies the equation
Tu=0.
r

Now define the transform.tion T* by

(T*£)(x) = £(x) - max,[g(z, a) + & Z_2(y)e(y; x, 2)].
: = - + .
Thus T#v =V (gn o ann)

Using the principle of optimality [2], ve can easily convince

ourselves that u¥* satisfies the equation T¥u = 0.

Theorem 1. T*u < T¥v implies u < v.

For rigorous treatment of this and related questions see [1] and

(%],




Procf. Tremslated, the hypothesis T¥u < T¥v beccmes

u(x) - v(x) < max [g(x2) + czzyu(y)p(y;x,a)l
- mox_lg(x,e) + aEyV(y)p(y;x,a)j < mxa® (a(y)v(y))e(ysx,e).
Suppose the maximum of the left side is m > 0. The maximum will be
achieved =zt a point Xy Replacing u - v with m on the right we get
the contradiction,
u(xo) - v(xo) =n < max dEy mp(y;xo,a) = am,
and the proof is complete.

If there is only ore action for each state, T# is of the same form

as Tr’ Thus, we have
Corollary 1. 'I'ru < ‘l‘rv implies u < v.
An immediate application of Theorem 1 is

Corollary 2. The dynamic programming equation T%a = 0 has at most one
(finite) solution.

Proof. If T*u = T¥v = O, then u <v and v < u by Theorem 1. Hence, u = v.

3. The algorithm. Iet vy be an arbitrary function with vl(s) =0

vhere s is a conveniently selected state, and defire the sequence of

functions {vn} and the sequences of constants {LI:} and {Lr:'}’ by,

Vol T &y + ann - (gn ta ann)(s)’

’ = mi + -
L =min (gn @ PV vn)(x) N
T X4
= + - .
L " =max (gn @ PV vn)(x)

Notice each function v, is zero at S. Ncw let t = (1-a)'l’ and
define the sequence of functions {ur:} and {ur:a} by

w =v_ o+’

n n n

w’=v +1tL’’,

n n n

Theorem 2. (i) The optimal return u* satisfies ur: < u¥ < ur:'.




- <, L4 P P Ed
(iiYu ' < ) 3

4 P4
. > . (iii ~u¥, v’ o u%. (iv) Iet
o S W, v 2R (iii) u ;B ou (iv) Ie

u*n be the expected discounted return for the stationary policy T
Then u* > u’.

n —-—
Proof. In the fcllowing, let v =g +o Pv_ - L', so thaw
—_— d n nn n

v'>v,and1etv"=gn+osz - L, sothat v <v.
n='n nn n n r

n , =
,s ,e
Also, v .. =v. - v (s} =+v"" - v (s},
> "n¥l n n( / n n( )
P d . - - -
(1) 111‘; <u¥<u . Asvas pointed out above, u¥ satisfies

T¥*u* = O, From the definiticn of T¥* we get,

My’ =v +tL - [g +aP v +q L)
n n n nn n

v +tL° - v/ +L% + ¢ tL”]
n n by n n

=vn-v'<0=‘1’*u*.

Therefore u < v¥ by Theorem 1. Similarly,

’re

T*
n

v +tL -[g +¢Pv +atL’ ']
n n n nn n

L4

=v +%L°7 - +L° + o t1L”]
n n

LV

Yy
n n n

=v_-v." >0 =TH*

n n ’

and uI;' > u* again by Theorem 1.

L4

. ’ Yy’ . .
(ii) ur: <u >u For convenience we use 1 and 2 in

P d
u
+1’ “n n+l’

place of n and n+l. e have

w=v, +tL. =v +tm)icn[g2+e'Pv -v,)

2 2 2 2 22 2
> v, + & min [gl+aPlv2-v2]
. , , , ,
= v, +t min [gl+o:Plvl-ozv1 (s) - vy v (s)]

> - - rd - rd
>v, +tmin [gl o PV, - v+ (1-a) v (s)]

ld 4 M 4 rd td
v, Ly F vl(.,) V] F L 2 v, o+ tL =)

Similarly,

P d
u, Vo tth, = v, t t max [g2 + oV, - v2]

x4 I Ed t 4
+ 1) a - N - -
Vo * tomax [g2 + PV, vyt (1-2) vy (s)]

a r _ 1 - vy d
+tmax (g, + aPyvy - v, (1-o) v, (s)]

IA

Vo

‘N




< v, +t mﬁx [gl +-aPivl - v{' + (1-a) vi'(s)]
- "‘ Y4 , P = ¥4
A2 + % Ll f‘vl + tLl ul .

(iii) Convergence of ug and u;' to u*. Convergence itself is
imrediate from the monotonicity and the fact that u¥* is an upper
bound for u; and a lover bound for u;'. let u = lim u;. We show
that u_ satisfies T*u = 0, and hence u = u¥ by Corollary 2. The
argument is similar for ug'. Since L; = u; (s)/t < u¥(s)/t, lim L;
=L is finite. Iet limv =v, =4, - L t.

First we establish that v;(s) -~ 0; in fact T v;(s) converges.
Coasidering the proof of (ii) at the point x = s yields L] > L. +

2 1

(1-¢) v{(s). Proceeding inductively gives L; > Li + (L-&r) Ez-l vi(s).

. . - . -
Since L is bounded and since v;(s) >0, © v;(s) converges. Now,

'd r'd P4
v =V - v {s) = +cPyv -1 so we write
n n+l n( ) €y nn n’

v (%) - v(s) = max [g(xia) + o 5 v_(¥)p(ysx2)

v s, () - v We(me) ] - 5

1A

maxa[g(x,a) + @ :y va(y;x,a)] - L
+ max_ maxa[a ;y (vh(y) - v&y))p(y;x,a)] +L - L;.
Taking limits gives
vo(x) < mex [g(x,a) + ¢ v (v)p(y;x,e)] - L.
With m%n m%n replacing mgx max in the preceding, the inequality
is reversed so that we get equality. Substitution of v_=u_ - tL

0 w

gives u_(x) = max le(x,a) + ¢ ygs u_(v)p(y;x,a)], that is, T*u_ = O,

(iv) u* > u;. Define T, as indicated in Section 2, by

n

= - + . * = + * i * = .
T}nf f (gn o Pnf) Now, u* =g +cPu* , that is, Trng L =0
But T, u; < 0 as vas seen in this proof of (i). Application of

n

Corollary 1 gives u; < u*n. This completes the proof.
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